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a b s t r a c t

A new algorithm for EPR imaging oximetry is described and tested with experimental data for the case of
one spatial and one spectral dimension. A single species with variable linewidth is assumed. Instead of
creating a 2D image, two one-dimensional profiles are reconstructed: the concentration of the radical
and the corresponding oxygen concentration, which reduces the dimensionality of the problem. The algo-
rithm (i) seeks to minimize the discrepancy between experimental data and projections calculated from
the profiles and (ii) uses Tikhonov regularization to constrain the smoothness of the results. This
approach controllably smoothes profiles rather than the data, while preserving sharp features.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Electron paramagnetic resonance imaging (EPRI) is under devel-
opment for diverse biomedical applications including cardiology
[1], liposomal drug delivery [2], oxidative stress and reperfusion
injury [3], and cancer [4,5]. Many applications of EPR imaging in-
volve oximetry [6], in which local oxygen concentration is detected
via the broadening of a narrow paramagnetic probe signal by col-
lisions with paramagnetic oxygen. Imaging information is encoded
by recording spectra (projections) in the presence of magnetic field
gradients. Spectral–spatial or spectroscopic images are recon-
structed in which the spectrum is determined at each position in
the sample. Since the concentrations of probes are low, and there
are time constraints on data acquisition for real-world applica-
tions, images must be reconstructed from limited numbers of noisy
projections. Image reconstruction in this situation is known to be
an ill-posed problem [7]. This means that from an infinitely large
number of solutions that match almost equally well with the
experimental data, the one that probably is the best must be
selected.

Many reconstruction algorithms have been developed for vari-
ous imaging modalities. Filtered backprojection method (FBP),
which was developed for X-ray tomography [8], is the most com-
monly used method for EPR imaging. The advantages of FBP are:
modest computation time, simplicity in implementation, and
robustness. Its well-known disadvantages include characteristic
distortions (‘‘star effect”) that occur when there are too few projec-
ll rights reserved.
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tions and the need for equally spaced projections [9]. If there are no
sharp features in the experimental projections, images recon-
structed by FBP can be improved by smoothing the data before
the algorithm is applied. However, for images of unknown objects
it is difficult to define the filtering parameters that can be used
without distorting features in noisy spectra. Iterative methods,
such as maximum entropy, may give more accurate results but
are more computationally intensive [10,11].

An alternate approach to finding solutions of ill-posed problems
is Tikhonov regularization [7,12,13], which when applied to image
reconstruction seeks to minimize the function

kbRIð~qÞ � ~Dk2 þ kkbLð~qÞk2 ð1Þ

where bR is the discrete Radon transform operator for projections at
angles ~H; Ið~qÞ is the image, ~D is the experimental projection data, k
is the regularization parameter, bL is the regularization operator, ~q is
a vector of parameters to be regularized, and the notation kk indi-
cates the Euclidean norm.

The term kbLð~qÞk2 is the regularization term. The term
kbRIð~qÞ � ~Dk is the error or penalty term (R) and reflects the dis-
crepancy between projections from the reconstructed image and
the experimental data. The selection of the regularization operator
can be used to impose constraints, based on knowledge of the sys-
tem. For example, bL ¼ L0 (the identity matrix) forces values of ~q to-
ward zero, bL ¼ L1 (the first-derivative matrix) forces values toward
a constant, and bL ¼ L2 (the second derivative matrix) forces the
slope toward a constant. Thus, the selection of bL provides a way
to smooth the image, instead of smoothing the experimental pro-
jections as is used in filtered backprojection, while also keeping
track of the impact of the smoothing on the error function. The lar-
ger the regularization parameter k, the smoother the image. Espe-
cially when data are noisy, the value of k must be large enough to
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filter out noise, but small enough that it does not suppress signif-
icant features. Thus, wise choice of regularization parameter is
important to keep the proper balance between minimizing the er-
ror term and smoothing the image. The quality of the outcome de-
pends upon the selection of k. In the literature various ways have
been used to select the regularization parameter, including the dis-
crepancy principle method [12–14], which takes noise statistic into
account, the L-curve method [15–19], and the generalized cross-
validation method [20,21]. A recent review concludes that k is usu-
ally selected empirically [22].

Another disadvantage of FBP is that it is difficult to incorporate
a priori information about the object that is imaged. For EPRI oxim-
etry the lineshape of the spin probe in the absence of oxygen,
including unresolved or resolved nuclear hyperfine structure, is
known. Collisions with oxygen decrease the T2 for the probe and
cause broadening of the line. The oxygen concentration is calcu-
lated from the broadening. The unknown parameters for each po-
sition in the object are line width (or line broadening), and the
integrated intensity of the line, which is proportional to radical
concentration at that point. One currently used approach is to fit
each spectral profile in the spectral–spatial image to a spin probe
lineshape [23] and thereby find the oxygen and radical concentra-
tion in each voxel [24], which requires two steps: reconstruction
and fitting.

A new approach to spectral–spatial imaging has been sug-
gested recently that reconstructs profiles directly and does not
require reconstruction of an intermediate image [25]. The goal
is to find a ‘‘lineshape constrained” image for which calculated
projections match the experimental projections as well as possi-
ble. The name ‘‘lineshape constrained” means that the lineshape
for each spectral slice of the image is broadened by a variable
amount relative to the lineshape for the probe in the absence
of oxygen. In addition to probe lineshape, other constraints can
be applied. It has been demonstrated that, compared with stan-
dard FBP reconstruction, this method permits significant reduc-
tion of data acquisition time by measurement of fewer
projections with smaller sweep widths without loss of quality
in the final results. In this Bayesian approach the goal is the im-
age with maximum a posteriori probability, taking into account a
priori information. It is assumed that experimental projections
are contaminated with random Gaussian noise and that spatial
profiles of radical concentration ~qR and linewidth ~qs need to
be smoothed. The vectors ~qR and ~qs are found by minimizing
function (2) using non-linear optimization [25].

kbRIð~qÞ � ~Dk2 þ k kbL1ð~qRÞk2 þ kbL1ð~qsÞk2
� �

ð2Þ

Eq. (2) is very similar to Tikhonov regularization (Eq. (1)).
However, in Eq. (2) two regularization terms are multiplied by
a single regularization parameter, which implies that the spatial
variation in distributions of oxygen and radicals have similar
smoothness. In real systems the spatial variation may be quite
different.

A new approach to finding a ‘‘lineshape constrained” image is
suggested. It is based on minimizing a function similar to (2), but
with two regularization parameters. Instead of non-linear optimi-
zation, the Tikhonov regularization method is used. This approach
allows more flexibility in incorporating a priori information such as
characteristics of oxygen and radical distributions and excluding
regions that are inaccessible to radical.

To test the utility of this approach, it is applied to oximetric
imaging with one spatial dimension and one spectral dimension.
This information can be presented as a 2D spectral–spatial image
that displays the EPR spectrum as a function of position along an
axis through the sample. For the lineshape constrained case, the
same information can be presented more compactly in two 1D
arrays that summarize the information from spectral slices
through the spectral–spatial image. Each element in the spatial
profile of the radical, ~qR, is the integrated intensity. Each ele-
ment in the spatial profile of oxygen, ~qO, is the full width at half
height of the absorption signal, which is proportional to oxygen
concentration.

2. Regularized optimization (RO) algorithm

To account for differences in the spatial variation of radical and
oxygen concentrations, functions (1) and (2) were modified to have
separate regularization parameters, kR and kO, and regularization
operators, bLR and bLO, for the two profiles.

kbRIð~qR;~qOÞ � ~Dk2 þ kRkbLRð~qRÞk2 þ kOkbLOð~qOÞk2 ð3Þ

where I is the image matrix with dimension N � N;~qi is a vector of
length N, and ~D is a vector containing the experimental projections
sequentially. It is proposed that the two profiles can be calculated
iteratively holding one constant, while optimizing the other. For a
lineshape constrained image, the error term in function (3) can be
rearranged for two cases: constant ~qO or constant ~qR and expressed
in terms of matrices and vectors that are suitable for the Tikhonov
method.

For constant ~qO

kbRIð~qR;~qOÞ � ~Dk2 ¼
XN

k¼1

qk
R
bRSkðqk

OÞ � ~D
�����

�����
2

ð4Þ

where Sk is a matrix with the kth row equal to the intensity-normal-
ized spectrum at point k along the spectral axis, with linewidth = qk

O

and other rows = 0. Radon transformation of matrix Sk produces
projections that can be combined into a matrix that is denoted as
P as in Eq. (5)

kbRIð~qR;~qOÞ � ~Dk2 ¼ kP~qR � ~Dk2 ð5Þ

P can be calculated directly as the Radon transforms of spectral
slices arranged as columns in a matrix. Substitution of Eq. (5) into
Eq. (3) with the constraint that ~qO ¼ constant, taking the derivative
with respect to ~qR, and setting it equal to zero, gives Eq. (6) that can
be used to calculate ~qR.

~qR ¼ ðPTP þ kRLT
RLRÞ�1PT~D ð6Þ

where PT and LT are the transpose of the corresponding matrices.
The values of P and PT depend on the current estimate of ~qO.

A different approach is required to find ~qO at constant ~qR, be-
cause although the lineshape depends linearly on radical concen-
tration, it does not depend linearly on the linewidth values in ~qO.
However, the error function in Eq. (3) can be rewritten using an
approximate expression for the dependence of lineshape on line-
width in the range where changes are small enough to be approx-
imated by the linear term of a Taylor expansion.

For constant ~qR

kbRIð~qR;~qOÞ�~Dk2�
XN

k¼1

qk
R
bRSkðqk

OÞþ
XN

k¼1

qk
R
bR dSkðqk

OÞ
dqk

O

dqk
O�~D

�����
�����

2

ð7Þ

where dqk
O is an element of the vector of increments to the oxygen

profile that needs to be determined. Eq. (7) can be rewritten as

kbRIð~qR;~qOÞ � ~Dk2 � kP~qR � ~Dþ Qd~qOk2 ¼ kQd~qO �~Dk ð8Þ

where Radon transformation of the derivatives of Sk produces pro-
jections that can be combined into a matrix that is denoted as Q
in Eq. (8) and ~D is a vector of discrepancies between data and pro-
jections calculated from the current image. Substitution of Eq. (8)



Fig. 1. Flowchart for the regularized optimization (RO) algorithm. Input parameters are: experimental projections ~D; angles ~H at which projections were measured; goals of
regularization terms: Cg

R ;C
g
O with error limits: dR, dO; expected lower and upper limits for linewidths dHmin and dHmax; positions in the sample with significant radical

concentration, X; and the lineshape description. The goal of RO is to find the profiles ~qO and ~qR that minimize discrepancy with the data provided that jkLO~qOk � Cg
Oj 6 dO and

jkLR~qRk � Cg
R j 6 dR. The search strategy can be divided into two steps. In the first step the discrepancy error

P
is minimized without keeping track of changes in smoothness of

the profiles. When the lowest error is reached, the algorithm searches (step 2) for solutions that are smooth enough to match the criteria Cg
R and Cg

O. At this step the
discrepancy error may increase at the expense of smoothing of the profiles and improving the accuracy of ~qO and ~qR.
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into Eq. (3) and inclusion of the increment d~q in the regularization
term gives the rewritten function to be minimized:

kQd~qO � ~Dk2 þ kOkLO~qO þ LOd~qOk2 ð9Þ

With the constraint that ~qR ¼ constant, taking the derivative of
function (9) with respect to d~qO, and setting it equal to zero, gives
Eq. (10) that can be used to calculate the increment of ~qO from
the prior estimate.

d~qO ¼ ðQ TQ þ kOLT
OLOÞ�1ðQT~D� kOLT

OLO~qOÞ ð10Þ

where QT and LT are the transpose of the corresponding matrices. The
values of Q and QT depend on the current estimates of ~qO and ~qR.

It might happen that some values of dqk
O are large enough that

the second and higher derivatives of the Taylor series in Eq. (7)
cannot be neglected. In this case these elements have to be limited
to some reasonable level. A 10% threshold was imposed, such that
jdqk

Oj 6 0:1qk
O for each value of k.

3. Strategy

Eqs. (6) and (10) provide ways to iteratively calculate changes
in the oxygen and radical profiles that are required to minimize
the error function for particular values of kR and kO. The regulariza-
tion operators bLO and bLR are selected based on a priori knowledge
of the system. The following discussion concerns parameters for a
simple phantom composed of three tubes containing lithium
phthalocyanine (LiPc) in equilibrium with different oxygen con-
centrations. For this sample it is expected that oxygen concentra-
tion will be relatively constant within a tube so bLO ¼ bL1. The
radical concentration is more dependent on position so bLR ¼ bL2.
For a biological system other choices might be made.

Information about the system provides additional constraints.
The linewidth in the absence of oxygen and at the maximum oxygen
concentration that could be present in the sample are lower and
upper limits for values in~qO. Values in~qR must be greater than zero.
If there are regions in the sample where there is no radical, the cor-
responding values of~qR can be set to zero or excluded from the opti-
mization procedure. Focusing on the area in profiles with non-zero
intensities of EPR lines, X, reduces memory allocation and computa-
tional time. For biological samples regions could be selected based
on anatomical or physiological characteristics. For example, it is un-
likely that the paramagnetic probe would penetrate deep into bones.
It would also be possible to reconstruct only within the known con-
tours of an animal instead of a complete cylinder.
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The goal of the algorithm is to find profiles ~qO and ~qR that min-
imize discrepancy with the data within the constraints of the reg-
ularization terms. Available a priori data can be used to specify the
expected smoothness and thereby define Cg

R and Cg
O, where g indi-

cates goal. Experience with in vivo imaging is likely to produce rea-
sonable estimates of these parameters for particular types of
tissues. Profiles can then be sought that are within the limits:
jkLO~qOk � Cg

Oj 6 dO and jkLR~qRk � Cg
Rj 6 dR. To reach the goal a

large-scale non-linear optimization problem has to be solved. To
find the global minimum is a complicated and time-consuming
task. It suffices to obtain a solution with an error function that is
close enough to the global minimum in a relatively short time. It
was found empirically that more robust results were obtained if
the search strategy was divided into two steps. These steps are de-
scribed in the text below and shown in the flowchart representa-
tion of the algorithm (Fig. 1).

3.1. Intermediate profiles (step 1 in Fig. 1)

The first step is reconstruction of intermediate profiles.
Because the oxygen profile is gradually updated starting from a
guess profile (Eq. (10)), it is reasonable to begin iterations with
~qO ¼ const. This could be the linewidth of the non-gradient spec-
trum or an estimate of the average value. If something is known
about the O2 distribution, use of a more accurate initial guess
can reduce computational time significantly. In the limiting case
where ~qO is known, only a single implementation of Eq. (6)
would be required to reach the final goal. Regularization param-
eters ki are adjusted iteratively to reduce the error function R(n),
where n is the number of the current iteration, until the next
iteration brings no further improvement, R(n+1) � R(n). The inter-
mediate profiles are designated as ~qR

O and ~qR
R and the corre-

sponding intermediate values of the regularization terms are
designated as CR

O and CR
R . Two approaches can be taken to

improve these intermediate profiles. (i) The values of kR and kO

can be varied and the impact on the error function monitored,
analogous to the L-curve implementation of the Tikhonov method.
(ii) If a priori information is available to define the expected
smoothness of the profiles, values of Cg

O and Cg
R can be defined

as goals, within specified limits, and values of kR and kO can
be adjusted iteratively to achieve these goals with minimum
impact on the error function. The values of CR

O and CR
R are upper

limits on Cg
O and Cg

R. Option (ii) is examined in this report.

3.2. Searching for profiles with target values of Cg
O and Cg

R (step 2 in
Fig. 1)

In the second step the algorithm keeps track of the smoothness
of the profiles as well as changes in the error function. Reconstruc-
tion of ~qO involves a series of iterations, so each profile evolves
from the previous one. If CR

O is much larger than Cg
O, it may take

many iterations of ~qO to reach this goal because it is difficult to
jump from a very noisy profile to a smooth one. This process can
be accelerated by smoothing ~qR

O to get closer to Cg
O and using the

smoothed profile ~qs
Oas the new starting point. The following ap-

proach to smoothing was used

~qs
O¼a~qn

Oþð1�aÞ~qR
O; a2 ½0;1�; with the goal that kLO~qs

Ok¼Cg
O

ð11Þ

where ~qn
O is the result of nth order polynomial fitting of ~qR

O. Param-
eter n is adjusted, so that kLO~qn

Ok < Cg
O < kLO~qR

Ok. To estimate a one
can rewrite Eq. (11) in the form:

ða~V þ ~U � a~V þ ~UÞ ¼ a2~V �~V þ 2a~V � ~U þ ~U � ~U;

~V ¼ LOð~qn
O �~qR

OÞ; ~U ¼ LO~qR
O; a 2 ½0;1�

ð12Þ
where (x � x) is the dot product of two vectors. Solution of quadratic
Eq. (12) gives parameter a. Substitution of a into Eq. (11) gives
profile ~qs

O, which when substituted into Eq. (6) produces ~qs
O with

the desired CR. This process produces profiles with good, but not
necessarily the best, agreement with the data and with Cg

O and
Cg

R. Starting from these profiles, the algorithm iteratively adjusts
kO and kR (Eqs. (6) and (10)) to minimize the error function, while
keeping the regularization terms within the intervals Cg

O � dO and
Cg

R � dR. When iteration fails to reduce error, the algorithm
terminates.
4. Experimental

4.1. Sample preparation

Electrochemically prepared x-LiPc was graciously provided by
Prof. Harold M. Swartz (Dartmouth Medical School) [26]. Multiple
small crystals were placed in three quartz 3-mm OD tubes with
0.5 mm wall thickness. The amounts of sample in the three tubes
were different. One tube was extensively evacuated and then flame
sealed. The samples in the other two tubes were equilibrated with
a 2% O2 in nitrogen gas mixture then flame sealed. The three tubes
were arranged in a row with the evacuated sample in the middle.
Thus, the center-to-center distances between samples in adjacent
tubes were 3 mm.

4.2. Spectroscopy

The EPR spectra of the LiPc in each of the three tubes that com-
posed the phantom were measured separately. The full widths at
half height of the LiPc signals were 49 mG in the absence of O2

and 148 or 169 mG in the two tubes with �2% O2. For image recon-
struction dHmax was set at 250 mG and dHmin was set at 38 mG.
Similar limits were used for fitting of the spectral slices from the
FBP image.

Projections were acquired by rapid triangular-scan EPR [27].
Since the LiPc lineshape has mirror symmetry, the number of
experimental projections could be reduced by a factor of two, rel-
ative to what would be needed in a general case. Projections for a
2-D spectral–spatial image were measured at eight equally spaced
angles ranging from 5.63� to 84.38� in the spectral–spatial plane
[28], with no ‘missing’ projections. Magnetic field gradients varied
from 0.07 to 7.38 G/cm. The widths of the scans were adjusted to
include regions of interest in the gradient-broadened spectra and
scan frequencies were set to give a constant scan rate of 11 kG/s.
For each projection 2048 data points were recorded that encom-
pass both up-field and down-field scans. Spectra were Fourier-
deconvoluted to recover the slow-scan signals [27]. After deconvo-
lution the up-field and down-field scans were combined to in-
crease signal-to-noise by a factor of

p
2. After summation the

number of points in each projection was reduced to 287 by averag-
ing and interpolation to permit FBP image reconstruction with the
standard iradon Matlab routine.

Datasets obtained by averaging each projection 9216 or 50
times are denoted as ‘‘lower-noise” and ‘‘higher-noise”,
respectively.

4.3. Construction of comparison profiles and image

For comparison with the reconstructed profiles, expected pro-
files were calculated. The linewidth profile was calculated from
the known dimensions of the tubes and linewidths measured from
the individual tubes: 148, 49, 169 mG, respectively. It was assumed
that within each tube the linewidths for all LiPc crystals were the
same. To assist in the calculation of the expected spatial profile, a
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spectrum at a gradient of 9.9 G/cm was averaged 200,704 times.
This gradient is large enough that the signals from the three tubes
were separated. Deconvolution of each signal individually, with a
Lorentzian line of appropriate width, gave an estimate of the
experimentally determined radical profile, ~qe

R. The spatial variation
is not smooth because of the non-uniform distribution of small
crystallites in the tubes. Based on the linewidths for LiPc in the
three tubes measured separately, and the estimate of the radical
distribution profile, an image was reconstructed for comparison
with the images obtained by the RO and FBP methods.

These profiles were used to produce a priori information for the
RO algorithm. Since the oxygen concentration is constant within
each tube, ~qe

O is expected to consist of three flat lines with
Ce

O ¼ 0. The Ce
R value calculated from the experimental profile,

~qe
R, was 0.06 cm�1.

4.4. FBP algorithm implementation

Images were reconstructed by FBP on grids of 201 � 201 pixels
using 287 data points per projection by means of the standard ira-
don Matlab routine with default Ran-Lak filter and linear interpo-
lation. Each spectral slice in the 2D spatial–spectral image was
fitted to a Lorentzian lineshape by means of the lsqnonlin Matlab
routine for non-linear least-squares curve fitting. Fitting was done
only in the spatial regions that correspond to the interior volume of
the tubes. Other regions of the spectral–spatial images were de-
fined as zeros. Use of this a priori information reduced the ‘star ef-
fect’ distortion, which decreased the misfit error between
projections from the FBP image and the experimental data by a fac-
tor of two. The ridges that radiate out from the tube regions have
noticeable intensity in spaces between the tubes, so fitting in these
parts of the image gives rise to false values for radical concentra-
tion. The array of best fit linewidths from the 201 spectral slices
is ~qFBP

O and the integrated intensities for spectral slices are ~qFBP
R .

Computations were done on a 3 GHz Pentium PC. The time needed
Fig. 2. Examples of deconvolved rapid-scan spectra recorded with two magnetic field gra
9216 times (lower-noise data) and the spectra in (c) and (d) were averaged 50 times (h
for FBP reconstruction was about 0.2 s and the time required for
non-linear least-squares fitting of the slices was about 7 s.

If the differences between projections at successive angles are
not too large, images obtained by FBP can be improved by interpo-
lation [29–31]. Since these procedures can also introduce artefacts,
the comparison FBP images were reconstructed without
interpolation.

4.5. RO algorithm implementation

The RO algorithm was implemented in Matlab. To speed up exe-
cution, matrix operations were used wherever possible. However,
the algorithm has not been optimized, and rewriting some routines
in C would make execution faster. The outputs of RO for this one-
dimensional spatial case are ~qO and ~qR. There is no need for an
intermediate spectral–spatial image to be reconstructed. Values
of ~qO and ~qR were calculated only in the regions where radical con-
centration was not zero. Regularization parameters were varied in
very broad intervals kR = 10�5–105 and kO = (10�8–102) to cover
both lower and higher-noise datasets. For routine measurements
of images with similar signal-to-noise ratios, this range can be nar-
rowed to decrease computational time. For both datasets the algo-
rithm worked to find values of Ci with ±3% accuracy. The initial
guess ~qO for the first iteration was a constant 144 mG, which is
the average of dHmin and dHmax. The average computational time,
based on reconstruction of 182 images for various Ci values, was
4.5 ± 0.2 s for the projections with higher signal-to-noise ratio
and 3.9 ± 0.5 for the higher-noise dataset.

5. Results

The RO algorithm was tested with two sets of projections with
higher- and lower-noise levels, obtained by rapid-scan EPR at
250 MHz [27,32]. Sample spectra obtained with gradients of 0.07
and 7.38 G/cm, respectively, are shown in Fig. 2. For the higher-
dients: 0.07 (a and c) and 7.38 G/cm (b and d). Spectra in (a) and (b) were averaged
igher-noise data).



Fig. 3. Contour plots of the improvement in the error function for images reconstructed by RO relative to that for images reconstructed by FBP, v(CR, CO), as a function of the
regularization parameters CR and CO for the (a) lower-noise and (b) higher-noise datasets.
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noise dataset the signal-to-noise (SNR) decreased from about 100
to 10 as the gradient was increased from 0.07 to 7.38 G/cm. The
SNR was calculated as the amplitude of the most intense peak in
the spectrum divided by the standard deviation of the noise in a
baseline region. For the lower-noise dataset the SNR decreased
from about 1000 to 100, for the same increase in gradient. In both
cases the impact of the gradient on signal-to-noise was much less
than the quadratic dependence that would have been observed if
the traditional first-derivative signals had been recorded [27].

The error functions, RRO, for profiles reconstructed by RO for
various combinations of Cg

R and Cg
O were compared with RFBP for

images reconstructed by FBP. Sections of contour plots of the
improvement ratio
Fig. 4. Comparison of (a and b) ~qO (linewidths that reflect oxygen concentration) and ~q
higher-noise (b and d) datasets by FBP (green, dashed) and RO intermediate image (red, so
references to color in this figure legend, the reader is referred to the web version of thi
vðCg
R;C

g
OÞ ¼

RFBP

RRO
ð13Þ

as a function Cg
R and Cg

O are shown in Fig. 3. For each dataset RFBP is a
constant, so the largest value of v corresponds to the minimum error
for RO reconstruction. If the experimental projections were exact Ra-
don transforms of the spectral–spatial representation of the sample,
the best match between the experimental data and~qi would be found
for CR = 0.06 and CO = 0, which was estimated from the phantom. In
reality there is distortion by random noise and other hardware imper-
fections. For the low-noise data (Fig. 3a) the region with minimum er-
ror corresponds to CR � 0.06, as expected from the phantom, but CO

is larger than for the phantom which is attributed to distortions in the
R (c and d) radical concentrations. Profiles obtained from lower-noise (a and c) and
lid) are compared with the expected profile (blue, dotted). (For interpretation of the

s paper.)



Table 1
Comparison of intermediate profiles with images after application of target
parameters

Data Profiles v nR nO

Higher-noise Intermediate 2.2 1.8 2.11
Higher-noise Cg

O ¼ 0:0 and Cg
R ¼ 0:06 1.95 4.07 7.38 (2.3)a

Lower-noise Intermediate 1.19 1.47 2.24
Lower-noise Cg

O ¼ 0:0 and Cg
R ¼ 0:06 1.16 1.34 5.86 (1.4)a

a Values in parentheses are calculated from the FBP image in which the oxygen
profiles were the averages of values for each tube (Fig. 5).
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data. For the higher-noise data (Fig. 3b) the region with minimum er-
ror occurs for CR � 0.4 and CO � 3.5. The larger values of CO and CR

that minimize the error in Fig. 3b are attributed to the impact of noise
in the data, which decreases the smoothness of the profiles. When the
error function is used as the criterion for the ‘‘best” profiles, noise is
incorporated into the profiles. Thus, the ‘‘best” match with the data
may not be the ‘‘best” representation of the object. Based on the
knowledge of the phantom it is possible to smooth the profiles from
the noisy data to approach the values of CR and CO that are known
for the phantom, and thereby obtain more accurate profiles, even
though the error function is larger.

Additional insight concerning the algorithm can be obtained
by comparing profiles calculated by RO and FBP. The intermedi-
ate profiles ~qR

O and ~qR
R obtained by minimizing the error func-

tion are compared with the profiles for the phantom and the
slices from the FBP image in Fig. 4. For the lower-noise data
(Fig. 4a) the oxygen profiles obtained by RO are smoother than
those obtained by FBP, and both are in good agreement with
the phantom. For the higher-noise data (Fig. 4b and d) the pro-
files are all noisier, but the RO profiles are smoother than those
obtained by FBP. The improvement that can be obtained by
imposing known information about the profiles is shown in
Fig. 5, where the regularization terms were set equal to the
known values for the phantom, CO = 0.0 and CR = 0.06. For com-
parison the mean values of the oxygen profiles, within a given
tube, were calculated from the FBP profiles. For the lower-noise
data (Fig. 5a and c) the average values from the FBP profiles
and RO profiles are very similar. However, for the higher-noise
data (Fig. 5b and d) the advantages of RO are evident, especially
for the spatial profile. Even if the FBP profiles were smoothed, it
would be difficult to accurately define the distribution of
radicals.

The intermediate profiles and profiles after use of the
smoothing goals are compared quantitatively in Table 1. Applica-
Fig. 5. Comparison of (a and b) ~qO (linewidths that reflect oxygen concentration) and ~q
higher-noise (b and d) datasets by FBP (green, dashed) and RO image (red, solid) calculate
light-blue solid lines show the mean linewidths in the three tubes obtained from FBP pro
referred to the web version of this paper.)
tion of the goal constraints reduces the improvement factor v to
a greater extent for the higher-noise data than for the lower-
noise data. The decrease in v is attributed to smoothing that
causes an increase in the RO error function. The discrepancies
between the phantom and profiles obtained by RO or FBP are
calculated using Eq. (14)

ni ¼
k~qphantom �~qFBPk
k~qphantom �~qROk

; i ¼ R or O ð14Þ

where in both numerator and denominator the discrepancies be-
tween the phantom and the reconstructed profiles are calculated.
For each of the cases examined, the profiles obtained by RO are in
better agreement with the phantom than ones obtained by FBP,
especially for the noisy data. The values in Table 1 show that appli-
cation of regularization constraints to the intermediate profiles in-
creases discrepancy error with the data but, at the same time,
improves the resemblance of the calculated profiles with the phan-
tom. The one exception is that the constraints do not improve the
spatial profile for the low-noise data. In that case the spatial profile
obtained for the intermediate profiles, before the smoothness con-
straints, may be more precise than the estimate of the spatial profile
for the phantom. That estimate was obtained by deconvolution of a
R (c and d) radical concentrations. Profiles obtained from lower-noise (a and c) and
d with CO = 0, CR = 0.06, are compared with the expected profile (blue, dotted). The
file. (For interpretation of the references to color in this figure legend, the reader is



Fig. 6. Impact of CR and CO on radical and linewidth profiles for the lower-noise dataset. (a and c) Varying CO = 0.11 (lower, blue traces), 1.1 (middle, red traces), and 2.1 (top,
green traces) with constant CR = 0.06 and (b and d) varying CR = 0.005 (lower, blue traces), 0.06 (middle, red traces), and 0.41 cm�1 (top, green traces) with constant CO = 1.1.
Dashed black traces are the profiles in the phantom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 7. Comparison of the images reconstructed by RO (CO = 0 and CR = 0.06) and FBP (with average linewidths in each tube and fitting of each slice to a Lorentzian) from the
lower-noise dataset with the phantom image.
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single high gradient projection with different lineshapes for individ-
ual tubes. Uncertainties in the data and the deconvolution filter im-
pact the calculation of Cg

O.
The changes in the profiles obtained from the higher-noise data
that occur when the regularization terms are varied are shown in
Fig. 6. As Cg

O is decreased from 2.1 to 1.1 and 0.11 the oxygen pro-
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file becomes smoother (Fig. 6a and c). Similarly as Cg
R is decreased

from 0.41 to 0.06 and 0.005 the radical profile becomes smoother
(Fig. 6b and d). If Cg

i is too large, excess noise is retained in the pro-
file, but if Cg

i is too small then the profile is excessively smoothed. A
priori knowledge of appropriate values of regularization terms can
be of great importance to reveal accurate profiles calculated from
noisy experimental projections.

The images that correspond to the profiles obtained by RO from
the higher-noise data with Cg

R ¼ 0:06 and Cg
O ¼ 0 are shown in

Fig. 7, compared with that of the phantom and the image recon-
structed by FBP with fitting of spectral slices to a Lorentzian, and
the constraint that the oxygen profile is constant within each tube.
The image obtained by RO is in much better agreement with the
phantom than the image obtained by FBP.

6. Outlook

Reconstruction of EPR images is an ill-posed problem. Infinite
number of solutions can be found that fit the experimental data al-
most equally well. Additional information about the sample is
needed to increase the accuracy of reconstruction. Smoothing of
the data is one of the commonly used methods to increase the
robustness of the solution, often at the expense of distortion of
some sharp details in the image. One of the important features of
the RO algorithm is that smoothing is applied to the results, so
some sharp features in the image can be included if these are
strongly supported by the data. Another advantage of the algo-
rithm is that it provides the experimenter with a tool to incorpo-
rate any a priori knowledge into reconstruction such as lineshape
of radical, geometry of the sample, biological peculiarities of differ-
ent tissues with respect to accessibility of radical penetration and
oxygen distribution. For example, radicals may accumulate in the
bladder of an imaged animal. It is very likely that both O2 mole-
cules and radicals are evenly distributed throughout the urine
due to diffusion. Instead of hundreds of unknowns for this region,
only two are needed. Incorporation of this information increases
the accuracy of reconstruction and reduces computational time.
The phantom that was used to test the RO algorithm does not dem-
onstrate all the possibilities of the algorithm and we are looking
forward to further development of this approach to more dimen-
sions and real biological systems.
7. Summary

An algorithm has been developed and tested that permits inclu-
sion of a variety of a priori information in a flexible way. The con-
straint of known lineshape is built into the algorithm. Any
lineshape could be used that can be described by a linewidth and
an amplitude parameter. The algorithm directly constructs spatial
profiles of oxygen and radical concentrations which reduces the
dimensionality of the problem. Additional a priori information
can include constraints on minimum and maximum linewidths
and constraints on the average smoothness of the oxygen and rad-
ical profiles independently. Unlike FBP, projections do not need to
be equally spaced, and there are no requirements for specific
sweep widths, which means that projections may be selected that
optimize information about the sample. Smoothing is achieved by
applying average constraints on the profiles, unlike the process in
FBP that smooths experimental projections. Reconstruction with
the RO algorithm is about as fast as FBP with fitting of spectral
slices. The RO algorithm may be even more computationally effi-
cient if radical-containing regions are smaller than the whole
reconstruction volume, because the regions with negligible spin
density can be efficiently excluded from the iterations. For data
with poorer signal-to-noise, the profiles obtained with the RO algo-
rithm are in better agreement with experimental data and at the
same time the reconstructed profiles are smoother. Although the
algorithm is described and implemented here for 2D images, the
same approach could be used for 3D images. Implementation of
the algorithm for 4D is challenging. It would require inverting a
large N3 � N3 matrix, where N is the number points in one dimen-
sion. Possible approaches include reconstruction of the 4D image
as 3D slices, iteratively solving Eqs. (6) and (10) for sub-regions,
or using existing methods for large systems of algebraic equations
[33].
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